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The structures of the hexagonal Frank±Kasper phases F and

K, which have been described in terms of the aggregation of

clusters, are interpreted as modulated crystal structures. They

are basically composed of two close-packed layers with

ordered atomic vacancies rotated by 90� to each other about

their normal.
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1. Introduction

Frank & Kasper (1958, 1959) discussed the analysis and clas-

si®cation of complex alloys on the basis of sphere packing

using the concept of triangulated coordination shells. Frank±

Kasper (FK) phases are classi®ed as having tetrahedrally

close-packed (t.c.p.) structures containing interpenetrating

polyhedra with coordination numbers 12, 14, 15 or 16 (Frank

& Kasper, 1958, 1959; Shoemaker & Shoemaker, 1969; Nelson

& Spaepen, 1989). Frank & Kasper (1958, 1959) also showed

that most of these t.c.p. structures are layer structures

consisting of juxtaposed hexagonal and/or pentagonal anti-

prisms. Shoemaker & Shoemaker (1969) classi®ed these t.c.p.

structures according to the main polygons in the primary layer,

giving three categories: hexagons, pentagons and a mixture of

the two. Anderson (1978) pointed out that some complex t.c.p.

structures can be derived from a simple structure type, the

�-tungsten structure by crystallographic operations such as

translation, rotation, re¯ection and intergrowth. In these

analyses the structure is analyzed in terms of short-range

ordering of elemental structures such as clusters (or poly-

hedra, tiling, antiprisms, polygons etc.).

Hexagonal FK phases are classi®ed as t.c.p. structures

consisting mainly of hexagonal antiprisms. The simplest cases

are the cubic Cr3Si and hexagonal Zr4Al3 structures. Frank &

Kasper (1958, 1959) took up the tilings composed of squares

and equilateral triangles and showed that the atoms in Cr3Si

form deformed hexagonal antiprisms arranged in a square

pattern and those in Zr4Al3 are arranged in a hexagonal

pattern. Wang et al. (1989) used the projection method to

describe the structures of the hexagonal FK phases such as the

K phase.

Recently, we presented a new interpretation of complex

alloys related to an icosahedron (coordination number 12),

such as the �-Al4Mn phase as modulated crystals (Uchida &

Horiuchi, 1999; Uchida & Matsui, 2000; Uchida & Matsui,

2001). It was shown that the structure is basically composed of

close-packed layers with ordered atomic vacancies due to the

occurrence of charge-density waves. This interpretation is

essentially different from the idea of packing clusters in the

following respect: the existence of a basic structure with long-

range translational periodicity such as a close-packed layer. In



the present paper we report a similar study to see whether our

interpretation without clusters can be extended to the hexa-

gonal FK phases, which have been described in terms of the

aggregation of clusters. Examples are the F (Li & Kuo, 1986;

Lin & Steeds, 1986) and K (Li & Kuo, 1986) phases in a Ni-

based super alloy. That is to say we interpret these phases from

the viewpoint of the modulated crystal. It is shown that intense

diffraction spots come from close-packed layers with long-

range translational periodicity and weak ones are due to an

arrangement of atomic vacancies.

2. Two examples of the hexagonal FK phases

2.1. F phase

The F phase is one of the hexagonal FK phases and exists in

the region with a composition close to Cr41Co20Ni12Mo16W11

(Lin & Steeds, 1986) or Mo45W11Ni20Cr24 (Li & Kuo, 1986).

Lin & Steeds (1986) and Li & Kuo (1986) independently

determined the structure of the F phase with a hexagonal unit

cell (P6/mmm, a = b = 12.6, c = 4.6 AÊ ) by electron microscopy

and described it in terms of the aggregation of clusters.

Fig. 1(a) shows the projection of the structure along the [001]

axis. The atomic parameters determined by Lin & Steeds

(1986) were used. The structure is composed of four layers

stacked perpendicularly to the [001] axis, i.e. two primary

layers and two secondary layers. The two primary layers at z =

0 and 1
2 are formed by tessellations of triangles and hexagons.

Atoms of the two identical secondary layers at z = 1/4 and 3/4

are located at the center of the hexagonal antiprisms formed

by the superposition of the primary layers.

Here, we interpret the F phase from the viewpoint of the

modulated crystal. We now focus on the primary layers at z = 0

and 1
2. Solid circles in Fig. 1(b) represent atoms in the primary

layer at z = 0, gray circles in Fig. 1(c) those in the primary layer

at z = 1
2. The center of the hexagon in the primary layer,

marked by squares, is unoccupied. Here we refer to this as the

atomic vacancy site in the close-packed layer. It is then

understood that the two primary layers are two close-packed

layers with ordered atomic vacancies rotated by 90� to each

other about their normal. Atoms in the secondary layers are

located above and below the atomic vacancy sites in the

primary layers.

To elucidate the features of the primary layer in reciprocal

space, we calculated the intensity distribution in electron

diffraction patterns (EDPs) from the primary layers at z = 0

and 1
2. The result is shown in Figs. 2(a) and (b). The spot

positions can be interpreted by a modulated crystal as follows.

In the case of the primary layer at z = 0, intense spots located

at the intersections of solid lines are the basic spots. The

reciprocal lattice unit vectors g100 and g010 corresponding to

the basic spots have a magnitude of 0.48 AÊ ÿ1 and the indices in

the ®gure are based on the basic hexagonal lattice. It should be

noted that there is a periodic repetition of the positions of the

diffraction spots via the translation of the reciprocal lattice

vector of the basic hexagonal lattice. The other weak spots can

be explained by assuming modulation waves. First-order

modulation wavevectors cannot be uniquely identi®ed

because the structure re®nement has not been performed. For

example, we can choose three modulation waves as follows.

The three modulation waves have commensurate modulation

vectors qi (i = 1, 2, 3) with a magnitude of (4/9)|g110| along the

three equivalent g110 directions, where g110 is the wavevector

for the 110 basic spot. Among these three wavevectors, only

two are linearly independent. A diffraction vector H can be

written as

H � hg100 � kg010 �
X3

i�1

miqi;

where h, k and the mi are integers. For example, spots indi-

cated with marks A and B in Fig. 2(a) correspond to the

higher-order satellite spots of 2q1ÿ q2ÿ 2g100ÿ g010 andÿ3q1
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Figure 1
(a) Projection of the F phase along the [001] axis. The solid circles
represent atoms in the primary layer at z = 0 and gray circles at z = 1

2,
forming hexagonal antiprisms. The open circles represent atoms in the
secondary layers at z = 1

4 and 3
4, which are located at the center of the

hexagonal antiprisms. (b) Structure in the primary layer at z = 0. The solid
circles represent atoms. The squares represent the atomic vacancy sites. A
triangular net represents a close-packed layer. (c) Structure in the
primary layer at z = 1

2. The gray circles represent atoms.
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ÿ 3q2 + 2g010, respectively. In the case of the primary layer at

z = 1/2, intense spots located at the intersections of dashed

lines are the basic spots. The reciprocal lattice unit vectors

G100 and G010 corresponding to the basic spots have a

magnitude of 0.46 AÊ ÿ1 and the indices in the ®gure are based

on the basic hexagonal lattice. The hexagonal net generated by

wavevectors G100 and G010 has a relative orientation of 90� to

that by wavevectors g100 and g010. The other weak spots can be

explained by assuming three modulation waves. The three

modulation waves have commensurate modulation vectors Qi

(i = 1, 2, 3) with a magnitude of (2/5)|G110| along the three

equivalent G110 directions, where G110 is the wavevector for

the 110 basic spot. For example, spots indicated with marks C

and D in Fig. 2(b) correspond to the higher-order satellite

spots of ÿ2Q1 ÿ Q2 + G010 and 2Q1 + 3Q2 + G100 ÿ G010,

respectively. The calculated EDP of the F phase (Fig. 2c) can

be essentially obtained by superposing two sets of patterns

from two primary layers. This implies that the proper use of a

`hidden symmetry' such as a close-packed layer, which does

not appear in space-group symmetry, would be helpful in the

structure solution of phases related to the hexagonal FK

phases. Actually, we used the `hidden symmetry' to create the

structure model for the 12-fold quasicrystal (Uchida &

Horiuchi, 1998).

2.2. K phase

The K phase is one of the hexagonal FK phases and coexists

with the F phase (Li & Kuo, 1986). Li & Kuo (1986) deter-

Figure 3
(a) Projection of the K phase along the [001] axis. The solid circles
represent atoms in the primary layer at z = 0 and gray circles at z = 1

2,
forming hexagonal antiprisms. The open circles represent atoms in the
secondary layers at z = 1

4 and 3
4, which are located at the center of the

hexagonal antiprismes. (b) Structure in the primary layer at z = 0. The
solid circles represent atoms. The squares represent the atomic vacancy
sites. A triangular net represents a slightly distorted close-packed layer.
(c) Structure in the primary layer at z = 1

2. The gray circles represent
atoms.

Figure 2
Calculated EDPs from the primary layer (a) at z = 0, (b) at z = 1

2 and (c)
from the F phase along h001i based on the assumption that all the atoms
are Cr atoms. The diffraction spots located at the intersections of the solid
and dashed lines are the basic spots. The radius of the diffraction spots is
proportional to the diffraction intensity. The indices are based on the
basic hexagonal lattice. The EDP of the F phase (Fig. 2c) can be
essentially obtained by superposing two sets of patterns (Figs. 2a and b)
from two primary layers.



mined the structure of the K phase with an orthorhombic unit

cell (Pmmm, a = 12.5, b = 17.1, c = 4.5 AÊ ) by electron micro-

scopy and described it in terms of the aggregation of clusters.

Fig. 3(a) shows the projection of the structure along the [001]

axis. The structure is made of four layers stacked perpendi-

cularly to the [001] axis, i.e. two primary layers and two

secondary layers. The two primary layers at z = 0 and 1
2 are

formed by tessellations of triangles and hexagons. Atoms of

the two identical secondary layers at z = 1/4 and 3/4 are

located at the center of the hexagonal antiprisms formed by

the superposition of the primary layers.

We now focus on the primary layers at z = 0 and 1/2. Solid

circles in Fig. 3(b) represent atoms in the primary layer at z =

0, gray circles in Fig. 3(c) those in the primary layer at z = 1
2.

Although some atoms in the primary layer at z = 0 displace

largely, it is understood that the two primary layers are two

slightly distorted close-packed layers with ordered atomic

vacancies rotated by 90� to each other about their normal as in

the F phase.

To elucidate the features of the primary layer in reciprocal

space, we calculated the intensity distribution in EDPs from

the primary layers at z = 0 and 1
2. The result is shown in

Figs. 4(a) and (b). In the case of the primary layer at z = 0,

intense spots located at the intersections of solid lines are the

basic spots. The reciprocal lattice unit vectors g100 and g010

corresponding to the basic spots have a magnitude of 0.46 AÊ ÿ1

and create an angle of 60.6� to each other. The indices in the

®gure are based on the basic pseudo-hexagonal lattice. The

other weak spots can be explained by assuming modulation

waves. First-order modulation wavevectors cannot be

uniquely identi®ed because the structure re®nement has not

been performed. For example, we can choose two commen-

surate modulation waves as follows. The modulation vectors

qi (i = 1, 2) are (17/40)g100 + (7/40)g010 and (7/40)g100 +

(17/40)g010, respectively. A diffraction vector H can be written

as

H � hg100 � kg010 �
X2

i�1

miqi;

where h, k and mi are integers. For example, spots indicated

with marks A and B in Fig. 4(a) correspond to the higher-order

satellite spots of q1 + q2 and 2q1 + 2q2 ÿ 2g100, respectively. In

the case of the primary layer at z = 1
2, the reciprocal lattice unit

vectors G100 and G010 corresponding to the basic spots have a

magnitude of 0.47 AÊ ÿ1 and create an angle of 60.8� to each

other. The indices in the ®gure are based on the basic pseudo-

hexagonal lattice. The other weak spots can be explained by

assuming commensurate modulation waves. The two modu-

lation vectors Qi (i = 1, 2) are (19/42)G100 + (5/42)G010 and

(5/42)G100 + (19/42)G010, respectively. For example, spots

indicated with marks C and D in Fig. 4(b) correspond to the

higher-order satellite spots of ÿQ1 ÿ Q2 and ÿQ1 + 2Q2 ÿ
G010, respectively. The calculated EDP of the K phase (Fig. 4c)

can be essentially obtained by superposing two sets of patterns

from two primary layers.

3. Conclusions

We have given two examples. According to this new inter-

pretation, the other hexagonal FK phases (Nelson & Spaepen,

1989) such as the � phase and the J phase can be understood to

be modulated crystals (Uchida, 2000). This approach will be

helpful in the study of the hexagonal FK phases.

The authors would like to thank Drs S. Horiuchi and A.

Yamamoto of NIMS for discussions.
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